

FIRE: Infrastructure for Experience-based Systems

with Common Sense

Kenneth D. Forbus
1
, Tom Hinrichs

1
, Johan de Kleer

2
, Jeffrey Usher

1

Qualitative Reasoning Group, Northwestern University1 PARC, Inc.
 2

2133 Sheridan Road, Evanston, IL, 60201, USA 3333 Coyote Hill Road, Palo Alto, CA, 94304, USA

{forbus, t-hinrichs, usher}@northwestern.edu; dekleer@parc.com

Abstract

We believe that the flexibility and robustness of common
sense reasoning comes from analogical reasoning, learning,
and generalization operating over massive amounts of
experience. Million-fact knowledge bases are a good
starting point, but are likely to be orders of magnitude
smaller, in terms of ground facts, than will be needed to
achieve human-like common sense reasoning. This paper
describes the FIRE reasoning engine which we have built to
experiment with this approach. We discuss its knowledge
base organization, including coarse-coding via mentions and
a persistent TMS to achieve efficient retrieval while
respecting the logical environment formed by contexts and
their relationships in the KB. We describe its stratified
reasoning organization, which supports both reflexive
reasoning (Ask, Query) and deliberative reasoning (Solve,
HTN planner). Analogical reasoning, learning, and
generalization are supported as part of reflexive reasoning.
To show the utility of these ideas, we describe how they are
used in the Companion cognitive architecture, which has
been used in a variety of reasoning and learning
experiments.

 Introduction

The hallmarks of common sense reasoning are that it is
flexible, robust, and efficient. Deductive reasoning is
flexible, but to date, is neither robust nor efficient. Small
errors in knowledge can lead to an arbitrary number of
incorrect conclusions, if proof by contradiction is not
carefully controlled. Moreover, the NP-hard nature of
deduction makes it scale badly. This in turn requires
imposing tight resource bounds, making conclusions hit-
or-miss, since partial results are not always enlightening.
This suggests to us that common sense reasoning will not
be achieved by a simple combination of deduction plus a
large body of knowledge. There is a deeper problem as
well. General, first-principles axioms excel at specifying
what is logically possible in the domain being formalized.
They do not capture as well what tends to actually happen

Copyright © 2010, Association for the Advancement of Artificial

Intelligence (www.aaai.org). All rights reserved.

in the domain. Given limited knowledge, the set of models
implied by general axioms will always be much larger than
the reality they are modeling. What is missing, we think,
is experience. By experience, we mean knowledge of the
kinds of entities there are, and what kinds of things have
actually happened. If we can reason by analogy from
experience, we should be able to flexibly reason about new
situations, because analogy supports partial matches. If we
can generalize based on accumulated experience, we can
construct probabilistic models of the kinds of entities there
tend to be and the kinds of things that tend to happen.
These generalizations should provide robustness, since
they are grounded in the statistical properties of the
domain. Finally, if analogical matching, retrieval, and
generalization can be made efficient, with tightly
constrained deductive reasoning used to “fill in” small
gaps, then reasoning can be done efficiently. This is the
experience-based approach to common sense reasoning
that we are exploring.
 How much experience might be necessary for human-
level common sense reasoning? An upper bound is
extremely difficult to estimate, since it relies on a large
number of assumptions about human processing
capabilities. So let us estimate a lower bound. How much
knowledge is in books? In a recent experiment (Lockwood
& Forbus, 2009), an average of 8 assertions was generated
for each simplified English sentence by a natural language
understanding system, and an average of 388
assertions/diagram were generated by a sketch
understanding system. For an eight page chapter, heavy in
diagrams, this led to just over 10,000 assertions being
generated. This suggests that for a 100 page book, we can
expect on the order of 125,000 assertions. (If the book is
text-only, this number might drop to around 32,000
assertions.) Let us take the average of 78,500 as an
estimate. If a child in school reads 10 books/year for
grades 1-12, encoding just this much knowledge is 9.4×106
assertions, or several times the current size of the
ResearchCyc KB contents. If we use the diagram-heavy
estimate, to start to take into account the kind of
experience needed to ground what is needed to understand
what is in the books, this number rises to 1.5×107, over an
order of magnitude larger than ResearchCyc. Clearly

jenn
Typewritten Text
Forbus, K., Hinrichs, T., de Kleer, J., & Usher, J. (2010). FIRE: Infrastructure for Experience-based Systems with Common Sense. AAAI Fall Symposium on Commonsense Knowledge, Arlington, VA.

experience-based systems will place extreme demands on
whatever infrastructure is used for reasoning.
 The sheer scope of knowledge required indicates that
hand-coding is out of the question. The need to garner
experience from interaction, from human artifacts (e.g.,
books and the web) and people places another constraint
on the reasoning infrastructure: Experience-based systems
are best thought of as organisms rather than tools, since
they will need to accumulate knowledge over extended
periods of time, and continue to adapt as the distribution of
what they encounter changes.
 This paper describes our FIRE reasoning engine, which
we created to support experiments in building experience-
based systems. As described below, we have models of
analogical matching, retrieval, and generalization that have
both been used to model a wide variety of psychological
results and have been used in a variety of performance
systems. This paper does not focus on them, but on the
knowledge base infrastructure and support for other types
of reasoning that are needed for effective analogical
reasoning and learning at scale. We start by describing the
knowledge base (KB) organization, including the use of
coarse-coded indexes for retrieval, a persistent TMS for
logical environment support, and persistent case libraries to
support analogical retrieval and generalization. Next we
describe the reasoning services that FIRE provides,
including how we stratify them for efficiency and trade off
between reflexive and deliberative operations. How FIRE
is used in the Companions cognitive architecture is then
discussed, and we close with related and future work.

Knowledge Base Organization

We assume standard Cyc terminology in this paper, since
the KB contents we use are derived from either
ResearchCyc or OpenCyc, depending on the application,
plus our own extensions. The essentials are: Collections
model concepts, with isa indicating concept membership,
e.g. (isa Nero Mammal). Superordinate relationships
between concepts are indicated by genls statements, e.g.,
(genls Mammal Animal). Superordinate relationships
between predicates are indicated by genlPreds statements,
e.g., (genlPreds touches near). Facts are stored in
microtheories, which supply a form of context.
Microtheories are related via inclusion using genlMt
statements, e.g. (genlMt HumanActivitiesMt AffectMt).
A small number of predicates, such as genlMt, indicate
facts that are believed in every microtheory, i.e., are
global. All other facts are contextualized. Reasoning is
always performed with respect to some microtheory. That
microtheory and those it inherits from via genlMt
statements form the logical environment for that reasoning.
 The standard key operations for a KB include pattern-
directed retrieval and structural inferences (e.g. answering
questions about category inclusion, genls inferencing in
Cyc parlance). Analogical processing requires two
additional services. First, all of the facts which mention a
particular individual need to be retrieved, as a core

operation in dynamic case construction (Mostek et al.
2000). Second, it must support the persistent stores needed
by analogical retrieval and generalization. Analogical
retrieval requires storing case libraries, into which
particular situations are added (Forbus et al. 1995).
Analogical generalization requires storing generalization
contexts, into which particular situations are added for
incremental learning of probabilistic generalizations
(Friedman & Forbus, 2009). We start by describing fact
retrieval, then turn to analogical processing support.

Retrieving facts

FIRE’s KB infrastructure is implemented using a persistent
object database, AllegroCache1. Collections, predicates,
entities, and microtheories are all implemented as CLOS
objects, with structural facts involving them (e.g., genls,
genlPreds, genlMt, and argument constraints)
implemented via pointers involving numerical IDs
assigned to each object. Other facts are stored as fact
objects, with their own ID space. The difference in manner
of storage is hidden behind a procedural interface:
Retrieval operations dispatch on the predicate to either
invoke the general-purpose retrieval system or specialized
retrieval procedures relying on the pointer structure used to
implement special facts. Many structural inferences, such
as finding genls or instances, are implemented via
procedures that use pointer operations for efficiency.

Coarse-coding for retrieval. The need to retrieve all facts
which mention an entity as well as all facts matching a
pattern requires some subtlety to achieve both efficiency
and storage economy. McDermott (1975) argued that
indexing schemes can be viewed as storing partial
information about assertions, e.g., a list of all the assertions
whose first element is touches, chopping up an assertion
in all possible ways so that the constant parts of a query
pattern can be used to find candidates. These candidates
are then combined, for example, by intersection, and then
subsequently filtered by unification to produce matches.
Our experience with Cyc-sized knowledge bases indicates
that this model requires some modification to operate at
scale. First, intersection is rarely worthwhile, since it is
typically faster to simply run unification on the smallest
bucket. Second, exhaustive coding of all positions of an
assertion can generate a massive number of buckets,
almost none of which are useful. For example, using a
2006 snapshot of ResearchCyc, an exhaustive positional
indexing scheme generated 701,692 buckets – the longest
path through assertions was 104 elements long. The
distribution of paths through assertions has a long tail: the
vast majority of facts are described within a path length of
seven. This suggests using a coarse-coded indexing
scheme. We use only position within the top-level
structure of an assertion for encoding, and treat anything
beyond the sixth element as being equivalent.

1 http://www.franz.com/products/allegrocache/

 To implement buckets, we exploit AllegroCache’s
ability to do efficient range-based retrievals of sortable
data structures, in this case, integers. Recall that all
entities, predicates, collections, and microtheories are
implemented as objects with a common ID space, and facts
are implemented as objects with a second ID space.
Suppose a fact with ID F mentions something with ID E
anywhere in the �th position. We encode this fact as a
single integer by using the top bits for the entity ID,
followed by 3 bits to encode the position, followed by the
fact ID. This is illustrated in Figure 1.

 Given a pattern to retrieve, two mentions integers are
generated for each constant within it. Each integer starts
with the integer ID for the KB object corresponding to that
constant plus its coarse-coded position within the assertion,
plus either all zeros for the fact ID or all ones. These
integers constitute the upper and lower bounds for a ranged
search, and the unique fact IDs for the mention integers
within this range constitute the contents of one bucket.
The smallest bucket is used to generate the candidate list
for subsequent unification and filtering via logical
environments (described next).
 Mention integers are also designed to support rapid
retrieval of all facts mentioning an entity, as needed for
dynamic case construction. In that case, the location bits
are also set to zeros or ones to provide the bounds for the
ranged search, with the results subsequently filtered via
logical environment.
 Both of these operations are quite fast in practice –
orders of magnitude faster than our prior scheme, which
used a more standard table-oriented database. And, as the
numbers in Figure 1 indicate, 64 bit integers should suffice
for experimenting with knowledge bases several orders of
magnitude larger than currently exist.

Persistent TMS for logical environment support. The

logical environment used for a computation can contain

hundreds or even thousands of microtheories. Thus it is

crucial for efficiency to be able to quickly test whether or

not a fact is part of the current logical environment. To do

this, we adapt ideas from truth maintenance to create in the

KB a persistent TMS (PTMS) which tracks changes in

genlMt statements, so that testing membership of a fact

with respect to a logical environment is quick.

 The PTMS implementation is inspired by the ambiguity

packing approach of the ATMS and HTMS (de Kleer,

1986; 1992). From an ATMS perspective, every

microtheory is an ATMS assumption node. But there is

only one ATMS environment per node. Every (genlMT

mt1 mt2) introduces a justification mt2→mt1. As with

TMS’ the genlMT structure may contain cycles. Each

microtheory has a label consisting of a single environment

which contains itself, and all other microtheories it inherits

from. Figure 2 describes a set of 6 genlMT statements and

the resulting justification and label structure.

Labels are compactly represented by sparsely encoded bit
vectors, which provide compact storage and rapid testing
of whether labels overlap. Every fact in the KB has a
label, indicating the set of microtheories it is believed in.
Thus testing whether a fact is believed within a logical
environment is carried out by intersecting the bit vectors
corresponding to their labels. A compact structure
representing new microtheories in the WM is transparently
tied to the PTMS labels in the KB, so that all reasoning
correctly and efficiently respects the constraints imposed
by whatever logical environment is current.

Persistent storage for analogical retrieval and
generalization. We view FIRE as an infrastructure for
creating software organisms. That means they need to
have persistent memories over time. We store cases as
microtheories in the knowledge base. Case libraries are
implemented by another type of KB object, which tracks
what cases are considered to be part of the case library. As
with other special facts, making or retracting assertions in
the KB about case library membership causes these
underlying pointers to be changed appropriately. Facts
about case library membership are global, i.e., they do not
depend on the current logical environment, since they are
viewed as part of an organism’s memory. The MAC/FAC
analogical retrieval model (Forbus et al. 1995) uses content
vectors in the first-stage processing, followed by analogical
matching for the second stage. Content vectors are stored
with cases and incrementally updated as facts are added to
or removed from microtheories. (Content vectors are only
computed for microtheories that are added to a case library,
for efficiency.) Our previous scheme required reifying
case libraries in FIRE’s working memory, which was
extremely inefficient and often caused heap blowout.
 Our analogical generalization model, SAGE2 (Friedman
& Forbus, 2009), stores cases in generalization contexts.

2 SAGE is the next step in evolution of our SEQL model.

S bits entity ID 3 bits loc Fact ID

Layout of mention integer, 64 bits assumed

S # entities # Facts

32 4.3×109 5.4×108

28 2.7×108 8.6×109

24 1.7×107 1.4×1011

Figure 1: Mentions indexing scheme for retrieval

A
B

C

D

E
F

G

A:A

C:C

D:D

E:E

B:A,B,C

F:D,E,F

G:A,B,C,D,E,F,G

Figure 2: Justification and label structure resulting

from (genlM B A) (genlMT B C) (genlMT F D)
(genlMT F E) (genlMT G B) (genlMT G F).

For example, in modeling spatial language learning, each
spatial preposition has its own generalization context, to
which examples are added. SAGE compares incoming
examples with a set of examples and generalizations that it
maintains, assimilating the new example into a
generalization if it is sufficiently similar, or starting a new
generalization if it is sufficiently similar to one of the
examples. Generalization contexts are implemented as
objects that are a subclass of case libraries. This means
that what to compare against in this assimilation process
can be performed via MAC/FAC, instead of the previous
exhaustive comparison algorithm.
 A case library can also be specified dynamically as the
union of a set of case libraries. This is useful for
classification, e.g., MAC/FAC can be used over the set of
generalization contexts for concepts. It can also be used to
generate negative examples automatically (McLure et al
2010), by using all generalization contexts except for the
target concept to retrieve close competitors.

Stratified Reasoning Services

Reasoning with a very large knowledge base requires both
fast and efficient inference mechanisms and flexible,
deliberative control strategies. These goals tend to
conflict. We resolve this dilemma with two levels of
reasoning: reflexive inferences that are highly constrained
and run to completion, and deliberative inferences that can
explicitly represent and reason about the control state and
operate incrementally.

Reflexive Reasoning

The reflexive reasoning services in FIRE are designed to
support "immediate" or "obvious" inferences. Operations
at this level should not hang or loop forever, but should
instead succeed or fail quickly. To ensure this, the
reflexive level embodies several design decisions:

• It stratifies reflexive services into back-chaining
inferences and the primitive, single-step inferences
on which they are built.

• It is built on top of a logic-based TMS that provides,
among other things, a fast working memory cache for
intermediate results.

• It exploits the microtheory context mechanisms
provided by the KB and the Cyc ontology to limit
search.

• It outsources specially defined predicates as a
principled way of escaping to Lisp and integrating
external packages, such as analogy and spatial
reasoning.

• It supports a number of advice wrappers to
declaratively specify different kinds of resource
limits on queries.

 The reflexive level has two API calls that define the
stratified services: ask and query. Ask is the most
primitive inference, and in the simplest case just invokes

the KB to retrieve statements and justifies them in the TMS
(see below). It also supports microtheories, outsourced
predicates, and advice wrappers. Query on the other hand,
is the entry point for backchaining. It interprets rules in the
form of Horn clauses and searches breadth-first for all
solutions to the query. The use of Horn clauses is another
way the reflexive level trades off flexibility for efficiency,
since the rules specify the order in which to search
antecedents. By default, the depth of the search tree is
limited to twenty, though this can be adjusted through
advice wrappers. Query is built on top of ask and
supports the same parameters, advice wrappers, and
context restrictions.
 The Logic-based Truth Maintenance System (LTMS)
actually has three main functions: it caches results in RAM
to reduce KB accesses, it provides an audit trail for
explanation, and it maintains consistency when
assumptions change. Every time a fact is retrieved from
the knowledge base, the fact is stored in working memory
along with a justification that indicates that it came from
the KB. Facts that are inferred are justified with the kind
of inference and any antecedents that support them. When
belief in an antecedent changes, the change is rapidly
propagated without re-computing the actual inference.
This is especially important for higher-level reasoning such
as planning, where many states are projected and retracted
as it searches for a solution.
 The microtheory contexts partition the knowledge base
into collections of locally consistent and related assertions
(Lenat, 1998). Every query in FIRE is made with respect to
a context that limits KB retrievals to only those contexts
accessible from the query context (via microtheory
inheritance). This has the effect of both improving
efficiency by reducing retrieval results and ensuring
correctness by avoiding retrievals from unintended
contexts (such as hypothetical, fictional, or counterfactual
microtheories). In earlier versions of FIRE, before
contexts were strictly enforced, there was always the
possibility of seeing statements about Frodo Baggins in
inferences involving military courses of action, for
example.
 Outsourced predicates are the mechanism that makes
FIRE a federated reasoning engine. Inferences that are
implemented via external code are reified through
predicates defined in the knowledge base. When a query
is invoked that involves an outsourced predicate, FIRE
invokes the associated code rather than attempting to
retrieve an answer from the KB. Often, outsourced
predicates serve as an interface to an external package,
such as a simulation, game, or analogy system that can be
thought of as an alternative knowledge source. For
example, analogical matching is carried out via the
Structure-Mapping Engine (Falkenhainer et al 1989) via
outsourced predicates. Similarly, analogical retrieval and
generalization are both invoked through predicates that ask
for reminding and/or add cases to case libraries or
generalization contexts. Other times, an outsourced
predicate may simply be a more efficient way to encode an

algorithm. One benefit of invoking code in this way is that
declarative and procedural knowledge remain distinct and
rules do not textually embed pieces of code in them.
 In order to provide declarative control over reflexive
reasoning, FIRE uses advice wrappers that encapsulate
queries. Although the control strategy itself is fixed in
reflexive reasoning, wrappers can specify bounds on
resources, contexts, fact sources, and recursive depth of
inferences. For example, (wmOnly <query>) limits
<query> to be solved using only the contents of working
memory, without accessing the knowledge base at all.
(withBackchainingDepth <n> <query>) puts a strict
bound on recursive backchaining. (localOnly <query>)

limits lookups to the current microtheory environment
without inheritance. All told, there are about 25 such
wrapper predicates. Over time, we have come to rely less
on the strict stratification of ask and query and have
adopted a more nuanced control over resources via the
advice wrappers.

Deliberative Reasoning

The deliberative reasoning services are designed to support
simple kinds of reflective control. Currently, there are two
services at this level: solve and plan.
 Solve is, at its core, an And/Or graph search algorithm
(Forbus & de Kleer, 1993). By itself, this is not
deliberative. The deliberative aspect derives from three
features:
1) A suggestions architecture that explicitly represents

alternative solution strategies for problems in the
form of and/or graphs,

2) preferences between suggestions, implemented via
estimated costs for particular nodes and explicit
preference rules, and

3) reification of the graph in a way that permits
incremental operation, reasoning about the state of
the search, halting, or requesting additional answers.

Unlike the reflexive inferences, solve searches in a best-
first manner, governed by cost estimates calculated by the
system, and produces single solution by default. It can
incrementally produce additional solutions on demand and
can be interrupted and resumed by external systems. The
explicit representation of suggestions and preferences is
designed to permit reflective control and make it possible
to learn heuristics for problem solving.
 Plan is a Hierarchical Task Network (HTN) planner
modeled after the SHOP algorithm (Nau et al 1999). It
reduces high-level, non-operational tasks to linear
sequences of ground primitive actions that can be
executed. As with solve, it is not the planning algorithm
itself that is deliberative, but the heuristics for preferring
one task expansion over another and facilities for
incremental operation.
 The planner and solver are not built on top of each other,
but are complementary services. Solve is a purely
inferential mechanism that searches for sets of bindings to
answer queries. Although planning is also inferential, the
execution of plans provides a way to take action in the

world. An agent can thus execute actions that generate
new knowledge and write it out to the knowledge base, or
execute actions in an external system such as a game.
 Another deliberative aspect of the planner is the ability
to generate partial plans that include actions to defer
further planning until execution time. The doPlan operator
invokes planning as a primitive action. This allows the
plan/execution system to take actions that generate
information and then resume planning given that new
information. The doSolve operator can likewise invoke
the solver as a primitive action. The execution system that
makes this incremental behavior possible is not part of
FIRE itself, but is implemented as part of the Companions
architecture that builds upon it. We describe Companions
next.

Example FIRE application: Companions

The Companions cognitive architecture is exploring the
idea that analogical processing is a central operation in
human intelligence. Because we believe that common
sense relies on experience, and to date the more social
creatures are, the smarter they tend to be (Tomasello,
1999), Companions are being built with the goal of being
social organisms, capable of interacting with people and
thereby learning from them, in an apprenticeship fashion
(Vygotsky, 1962). For engineering reasons, Companions
are implemented via a distributed agent architecture. This
enables us to escape the limitations of a single desktop
machine by distributing agents over a cluster nodes.
However, multiple agents can also be run on a single
machine, for portability and ease of experimentation.
Depending on configuration, agents either share a KB
running on a separate KB server, or have their own local
copy of the KB, for efficiency. A journaling mechanism is
used to synchronize KB contents across agents.
 The agents that make up a Companion communicate via
KQML (Labrou & Finin, 1997). With the exception of a
Facilitator that sets up communication links between other
agents, and a Session Manager that provides a GUI for
starting, stopping, and debugging, agents are basically a
lightweight layer of communication services around FIRE.
Most of the operations of an agent are specified either via
HTN plans or solve suggestions, with simple “heartbeat”
computations invoking planning or solving as necessary.
 Companions have been used in a variety of experiments.
In modeling everyday physical reasoning (Klenk et al
2005) and transfer learning in AP Physics (Klenk &
Forbus, 2009), solve was used with cases retrieved via
analogy to learn by accumulating examples. Transfer
learning in general game playing (Hinrichs & Forbus 2009)
used plan to conduct experiments to learn winning
strategies for games, and SME for analogical mapping to
transfer learned strategies to new games. SAGE has been
used to model learning of naïve conceptions of motion
from sketched comic strips (Friedman & Forbus, 2009) and
sketched concepts using near-misses as well as

generalization (McClure et al 2010). These experiments
would not have been possible without FIRE.

Related Work

Many of our design choices are inspired by Cycorp’s Cyc
family of reasoning engines. This includes the use of
specialized storage for common kinds of facts, hidden
behind a standard pattern-directed retrieval interface for
uniform access, the use of microtheories to provide a
logical environment for reasoning, and the use of a variety
of procedural attachments for efficient inference. We
diverge from them in making analogical reasoning primary
in the reasoning system – analogical matching and
retrieval, for example, are more primitive than
backchaining, since they occur using ask.

Discussion

We believe that the key to common sense reasoning is
analogical reasoning and learning over vast amounts of
experience. We have described FIRE, the KB and
reasoning infrastructure we have built to experiment with
experience-based systems. Rapid retrieval from the KB
while respecting logical environment constraints is
supported by mention integers and a persistent TMS.
Specialized support for case libraries and generalization
contexts support analogical reasoning and learning.
Stratified reasoning services provide a combination of
reflexive and deliberative inference, supporting constrained
logical inference, traditional problem solving, and
planning. These techniques are used in the Companions
cognitive architecture, and are key to its performance in a
variety of successful experiments.
 There are several avenues for future work. First, we are
planning larger-scale experiments with Companions, with
the goal of improving the architecture and our NLU and
sketch understanding capabilities to the point where they
are able to learn as apprentices and learn by reading.
Second, a problem with the current strategies in the
reflexive layer is that they return all solutions by default.
This does not scale well, and we plan to explore techniques
like lazy retrieval or spreading-activation memories (cf.
Anderson 2007) to find better solutions.

Acknowledgements

This research is supported by the Defense Advanced
Research Projects Agency and by the Office of Naval
Research.

References

Anderson, J. 2007. How Can the Human Mind Occur in

the Physical Universe? Oxford.

de Kleer, J. An assumption-based TMS, Artificial

Intelligence 28(2):127-162,1986.

de Kleer, J. A hybrid truth maintenance system, PARC

Technical Report, January, 1992

Falkenhainer, B., Forbus, K., Gentner, D. The Structure-

Mapping Engine: Algorithm and examples. Artificial

Intelligence, 41, 1989, pp 1-63.

Forbus, K. and de Kleer, J., Building Problem Solvers,

MIT Press, 1993.

Forbus, K., Klenk, M., and Hinrichs, T. , 2009.

Companion Cognitive Systems: Design Goals and Lessons

Learned So Far. IEEE Intelligent Systems, vol. 24, no. 4,

pp. 36-46, July/August.

Friedman, S. and Forbus, K. 2009. Learning Naïve

Physics Models and Misconceptions. Proceedings of

CogSci-09.

Hinrichs T. and Forbus K. (2009). Learning Game

Strategies by Experimentation In Proceedings of the IJCAI

2009 Workshop on Learning Structural Knowledge From

Observations, Pasadena, CA.

Klenk, K., Forbus, K., Tomai, E., Kim, H., and

Kyckelhahn, B. 2005. Solving everyday physical reasoning

problems by analogy using sketches. Proceedings of

AAAI-05.

Klenk, M. and Forbus, K. 2009. Analogical model

formulation for transfer learning in AP Physics. Artificial

Intelligence http://dx.doi.org/10.1016/j.artint.2009.09.003

Labrou, Y., and Finin, T. 1997. A proposal for a new

KQML specification. TR CS-97-03, CS & EE

Department, University of Maryland Baltimore County.

Lenat, D. 1998. The Dimensions of Context-Space.

Cycorp Technical Report, October.

Lockwood, K. & Forbus, K. 2009. Multimodal

knowledge capture from text and diagrams. Proceedings

of KCAP-2009.

McDermott, D. 1975. Very large PLANNER-type

databases. AI Memo 339, MIT AI Lab.

http://hdl.handle.net/1721.1/6240

McLure, M., Friedman, S., and Forbus, K. 2010.

Learning concepts from sketches via analogical

generalization and near-misses. Proceedings of CogSci10.

Mostek, T., Forbus, K. and Meverden, C. 2000.

Dynamic case creation and expansion for analogical

reasoning. Proceedings of AAAI-2000. Austin, Texas.

Dana S. Nau, Yue Cao, Amnon Lotem, and Hector

Muñoz-Avila. SHOP: Simple hierarchical ordered planner.

In Proceedings of the Sixteenth International Joint

Conference on Artificial Intelligence, pages 968-973, 1999.

Tomasello, M. 1999. The Cultural Origins of Human

Cognition. Harvard University Press.

Vygotsky, L. (1962) Thought and Language. MIT

Press.

