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Abstract 

We believe that the flexibility and robustness of common 
sense reasoning comes from analogical reasoning, learning, 
and generalization operating over massive amounts of 
experience.  Million-fact knowledge bases are a good 
starting point, but are likely to be orders of magnitude 
smaller, in terms of ground facts, than will be needed to 
achieve human-like common sense reasoning.  This paper 
describes the FIRE reasoning engine which we have built to 
experiment with this approach.  We discuss its knowledge 
base organization, including coarse-coding via mentions and 
a persistent TMS to achieve efficient retrieval while 
respecting the logical environment formed by contexts and 
their relationships in the KB.  We describe its stratified 
reasoning organization, which supports both reflexive 
reasoning (Ask, Query) and deliberative reasoning (Solve, 
HTN planner).  Analogical reasoning, learning, and 
generalization are supported as part of reflexive reasoning.  
To show the utility of these ideas, we describe how they are 
used in the Companion cognitive architecture, which has 
been used in a variety of reasoning and learning 
experiments. 

 Introduction   

The hallmarks of common sense reasoning are that it is 
flexible, robust, and efficient.  Deductive reasoning is 
flexible, but to date, is neither robust nor efficient.  Small 
errors in knowledge can lead to an arbitrary number of 
incorrect conclusions, if proof by contradiction is not 
carefully controlled.  Moreover, the NP-hard nature of 
deduction makes it scale badly.  This in turn requires 
imposing tight resource bounds, making conclusions hit-
or-miss, since partial results are not always enlightening.  
This suggests to us that common sense reasoning will not 
be achieved by a simple combination of deduction plus a 
large body of knowledge.  There is a deeper problem as 
well.  General, first-principles axioms excel at specifying 
what is logically possible in the domain being formalized.  
They do not capture as well what tends to actually happen 
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in the domain.  Given limited knowledge, the set of models 
implied by general axioms will always be much larger than 
the reality they are modeling.   What is missing, we think, 
is experience.  By experience, we mean knowledge of the 
kinds of entities there are, and what kinds of things have 
actually happened.   If we can reason by analogy from 
experience, we should be able to flexibly reason about new 
situations, because analogy supports partial matches.  If we 
can generalize based on accumulated experience, we can 
construct probabilistic models of the kinds of entities there 
tend to be and the kinds of things that tend to happen.  
These generalizations should provide robustness, since 
they are grounded in the statistical properties of the 
domain.  Finally,  if analogical matching, retrieval, and 
generalization can be made efficient, with tightly 
constrained deductive reasoning used to “fill in” small 
gaps, then reasoning can be done efficiently.  This is the 
experience-based approach to common sense reasoning 
that we are exploring.    
 How much experience might be necessary for human-
level common sense reasoning?   An upper bound is 
extremely difficult to estimate, since it relies on a large 
number of assumptions about human processing 
capabilities.  So let us estimate a lower bound.   How much 
knowledge is in books?  In a recent experiment (Lockwood 
& Forbus, 2009), an average of 8 assertions was generated 
for each simplified English sentence by a natural language 
understanding system, and an average of 388 
assertions/diagram were generated by a sketch 
understanding system.  For an eight page chapter, heavy in 
diagrams, this led to just over 10,000 assertions being 
generated.  This suggests that for a 100 page book, we can 
expect on the order of 125,000 assertions.  (If the book is 
text-only, this number might drop to around 32,000 
assertions.)  Let us take the average of 78,500 as an 
estimate.  If a child in school reads 10 books/year for 
grades 1-12, encoding just this much knowledge is 9.4×106 
assertions, or several times the current size of the 
ResearchCyc KB contents.   If we use the diagram-heavy 
estimate, to start to take into account the kind of 
experience needed to ground what is needed to understand 
what is in the books, this number rises to 1.5×107, over an 
order of magnitude larger than ResearchCyc.  Clearly 
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experience-based systems will place extreme demands on 
whatever infrastructure is used for reasoning.   
 The sheer scope of knowledge required indicates that 
hand-coding is out of the question.  The need to garner 
experience from interaction, from human artifacts (e.g., 
books and the web) and people places another constraint 
on the reasoning infrastructure: Experience-based systems 
are best thought of as organisms rather than tools, since 
they will need to accumulate knowledge over extended 
periods of time, and continue to adapt as the distribution of 
what they encounter changes.   
 This paper describes our FIRE reasoning engine, which 
we created to support experiments in building experience-
based systems.  As described below, we have models of 
analogical matching, retrieval, and generalization that have 
both been used to model a wide variety of psychological 
results and have been used in a variety of performance 
systems.  This paper does not focus on them, but on the 
knowledge base infrastructure and support for other types 
of reasoning that are needed for effective analogical 
reasoning and learning at scale.  We start by describing the 
knowledge base (KB) organization, including the use of 
coarse-coded indexes for retrieval, a persistent TMS for 
logical environment support, and persistent case libraries to 
support analogical retrieval and generalization.  Next we 
describe the reasoning services that FIRE provides, 
including how we stratify them for efficiency and trade off 
between reflexive and deliberative operations.  How FIRE 
is used in the Companions cognitive architecture is then 
discussed, and we close with related and future work. 

Knowledge Base Organization 

We assume standard Cyc terminology in this paper, since 
the KB contents we use are derived from either 
ResearchCyc or OpenCyc, depending on the application, 
plus our own extensions.   The essentials are: Collections 
model concepts, with isa indicating concept membership, 
e.g. (isa Nero Mammal).  Superordinate relationships 
between concepts are indicated by genls statements, e.g., 
(genls Mammal Animal).  Superordinate relationships 
between predicates are indicated by genlPreds statements, 
e.g., (genlPreds touches near).  Facts are stored in 
microtheories, which supply a form of context.  
Microtheories are related via inclusion using genlMt 
statements, e.g. (genlMt HumanActivitiesMt AffectMt).  
A small number of predicates, such as genlMt, indicate 
facts that are believed in every microtheory, i.e., are 
global.  All other facts are contextualized.  Reasoning is 
always performed with respect to some microtheory.  That 
microtheory and those it inherits from via genlMt 
statements form the logical environment for that reasoning.   
 The standard key operations for a KB include pattern-
directed retrieval and structural inferences (e.g. answering 
questions about category inclusion, genls inferencing in 
Cyc parlance).   Analogical processing requires two 
additional services.  First, all of the facts which mention a 
particular individual need to be retrieved, as a core 

operation in dynamic case construction (Mostek et al. 
2000).  Second, it must support the persistent stores needed 
by analogical retrieval and generalization.  Analogical 
retrieval requires storing case libraries, into which 
particular situations are added (Forbus et al. 1995).  
Analogical generalization requires storing generalization 
contexts, into which particular situations are added for 
incremental learning of probabilistic generalizations 
(Friedman & Forbus, 2009).  We start by describing fact 
retrieval, then turn to analogical processing support. 

Retrieving facts 

FIRE’s KB infrastructure is implemented using a persistent 
object database, AllegroCache1.  Collections, predicates, 
entities, and microtheories are all implemented as CLOS 
objects, with structural facts involving them (e.g., genls, 
genlPreds, genlMt, and argument constraints) 
implemented via pointers involving numerical IDs 
assigned to each object.  Other facts are stored as fact 
objects, with their own ID space.  The difference in manner 
of storage is hidden behind a procedural interface: 
Retrieval operations dispatch on the predicate to either 
invoke the general-purpose retrieval system or specialized 
retrieval procedures relying on the pointer structure used to 
implement special facts.  Many structural inferences, such 
as finding genls or instances, are implemented via 
procedures that use pointer operations for efficiency. 

Coarse-coding for retrieval.  The need to retrieve all facts 
which mention an entity as well as all facts matching a 
pattern requires some subtlety to achieve both efficiency 
and storage economy.   McDermott (1975) argued that 
indexing schemes can be viewed as storing partial 
information about assertions, e.g., a list of all the assertions 
whose first element is touches, chopping up an assertion 
in all possible ways so that the constant parts of a query 
pattern can be used to find candidates.  These candidates 
are then combined, for example, by intersection, and then 
subsequently filtered by unification to produce matches.  
Our experience with Cyc-sized knowledge bases indicates 
that this model requires some modification to operate at 
scale.  First, intersection is rarely worthwhile, since it is 
typically faster to simply run unification on the smallest 
bucket.  Second, exhaustive coding of all positions of an 
assertion can generate a massive number of buckets, 
almost none of which are useful.   For example, using a 
2006 snapshot of ResearchCyc, an exhaustive positional 
indexing scheme generated 701,692 buckets – the longest 
path through assertions was 104 elements long.  The 
distribution of paths through assertions has a long tail: the 
vast majority of facts are described within a path length of 
seven.  This suggests using a coarse-coded indexing 
scheme.   We use only position within the top-level 
structure of an assertion for encoding, and treat anything 
beyond the sixth element as being equivalent.   
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 To implement buckets, we exploit AllegroCache’s 
ability to do efficient range-based retrievals of sortable 
data structures, in this case, integers.  Recall that all 
entities, predicates, collections, and microtheories are 
implemented as objects with a common ID space, and facts 
are implemented as objects with a second ID space.  
Suppose a fact with ID F mentions something with ID E 
anywhere in the �th position.   We encode this fact as a 
single integer by using the top bits for the entity ID, 
followed by 3 bits to encode the position, followed by the 
fact ID.  This is illustrated in Figure 1.  
 

 Given a pattern to retrieve, two mentions integers are 
generated for each constant within it.  Each integer starts 
with the integer ID for the KB object corresponding to that 
constant plus its coarse-coded position within the assertion, 
plus either all zeros for the fact ID or all ones.  These 
integers constitute the upper and lower bounds for a ranged 
search, and the unique fact IDs for the mention integers 
within this range constitute the contents of one bucket.  
The smallest bucket is used to generate the candidate list 
for subsequent unification and filtering via logical 
environments (described next).   
 Mention integers are also designed to support rapid 
retrieval of all facts mentioning an entity, as needed for 
dynamic case construction.  In that case, the location bits 
are also set to zeros or ones to provide the bounds for the 
ranged search, with the results subsequently filtered via 
logical environment.   
 Both of these operations are quite fast in practice – 
orders of magnitude faster than our prior scheme, which 
used a more standard table-oriented database.  And, as the 
numbers in Figure 1 indicate, 64 bit integers should suffice 
for experimenting with knowledge bases several orders of 
magnitude larger than currently exist. 
 

Persistent TMS for logical environment support.  The 

logical environment used for a computation can contain 

hundreds or even thousands of microtheories.  Thus it is 

crucial for efficiency to be able to quickly test whether or 

not a fact is part of the current logical environment.  To do 

this, we adapt ideas from truth maintenance to create in the 

KB a persistent TMS (PTMS) which tracks changes in 

genlMt statements, so that testing membership of a fact 

with respect to a logical environment is quick. 

 The PTMS implementation is inspired by the ambiguity 

packing approach of the ATMS and HTMS (de Kleer, 

1986; 1992). From an ATMS perspective, every 

microtheory is an ATMS assumption node. But there is 

only one ATMS environment per node. Every  (genlMT 

mt1 mt2) introduces a justification mt2→mt1. As with 

TMS’ the genlMT structure may contain cycles. Each 

microtheory has a label consisting of a single environment 

which contains itself, and all other microtheories it inherits 

from. Figure 2 describes a set of 6 genlMT statements and 

the resulting justification and label structure. 

Labels are compactly represented by sparsely encoded bit 
vectors, which provide compact storage and rapid testing 
of whether labels overlap.  Every fact in the KB has a 
label, indicating the set of microtheories it is believed in.  
Thus testing whether a fact is believed within a logical 
environment is carried out by intersecting the bit vectors 
corresponding to their labels.  A compact structure 
representing new microtheories in the WM is transparently 
tied to the PTMS labels in the KB, so that all reasoning 
correctly and efficiently respects the constraints imposed 
by whatever logical environment is current. 

Persistent storage for analogical retrieval and 
generalization.  We view FIRE as an infrastructure for 
creating software organisms.  That means they need to 
have persistent memories over time.  We store cases as 
microtheories in the knowledge base.  Case libraries are 
implemented by another type of KB object, which tracks 
what cases are considered to be part of the case library.  As 
with other special facts, making or retracting assertions in 
the KB about case library membership causes these 
underlying pointers to be changed appropriately.  Facts 
about case library membership are global, i.e., they do not 
depend on the current logical environment, since they are 
viewed as part of an organism’s memory.  The MAC/FAC 
analogical retrieval model (Forbus et al. 1995) uses content 
vectors in the first-stage processing, followed by analogical 
matching for the second stage.  Content vectors are stored 
with cases and incrementally updated as facts are added to 
or removed from microtheories.  (Content vectors are only 
computed for microtheories that are added to a case library, 
for efficiency.)  Our previous scheme required reifying 
case libraries in FIRE’s working memory, which was 
extremely inefficient and often caused heap blowout.   
 Our analogical generalization model, SAGE2 (Friedman 
& Forbus, 2009), stores cases in generalization contexts.  
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S bits entity ID 3 bits loc Fact ID 

Layout of mention integer, 64 bits assumed 
 

S # entities # Facts 

32 4.3×109 5.4×108 

28 2.7×108 8.6×109 

24 1.7×107 1.4×1011 

Figure 1: Mentions indexing scheme for retrieval  

A
B

C

D

E
F

G

A:A

C:C

D:D

E:E

B:A,B,C

F:D,E,F

G:A,B,C,D,E,F,G

Figure 2: Justification and label structure resulting 

from (genlM B A) (genlMT B C) (genlMT F D) 
(genlMT F E) (genlMT G B) (genlMT G F). 



For example, in modeling spatial language learning, each 
spatial preposition has its own generalization context, to 
which examples are added.  SAGE compares incoming 
examples with a set of examples and generalizations that it 
maintains, assimilating the new example into a 
generalization if it is sufficiently similar, or starting a new 
generalization if it is sufficiently similar to one of the 
examples.  Generalization contexts are implemented as 
objects that are a subclass of case libraries.  This means 
that what to compare against in this assimilation process 
can be performed via MAC/FAC, instead of the previous 
exhaustive comparison algorithm. 
 A case library can also be specified dynamically as the 
union of a set of case libraries.  This is useful for 
classification, e.g., MAC/FAC can be used over the set of 
generalization contexts for concepts.  It can also be used to 
generate negative examples automatically (McLure et al 
2010), by using all generalization contexts except for the 
target concept to retrieve close competitors.   

Stratified Reasoning Services 

Reasoning with a very large knowledge base requires both 
fast and efficient inference mechanisms and flexible, 
deliberative control strategies.  These goals tend to 
conflict.  We resolve this dilemma with two levels of 
reasoning: reflexive inferences that are highly constrained 
and run to completion, and deliberative inferences that can 
explicitly represent and reason about the control state and 
operate incrementally.  

Reflexive Reasoning 

The reflexive reasoning services in FIRE are designed to 
support "immediate" or "obvious" inferences.  Operations 
at this level should not hang or loop forever, but should 
instead succeed or fail quickly.  To ensure this, the 
reflexive level embodies several design decisions: 

• It stratifies reflexive services into back-chaining 
inferences and the primitive, single-step inferences 
on which they are built. 

• It is built on top of a logic-based TMS that provides, 
among other things, a fast working memory cache for 
intermediate results. 

• It exploits the microtheory context mechanisms 
provided by the KB and the Cyc ontology to limit 
search. 

• It outsources specially defined predicates as a 
principled way of escaping to Lisp and integrating 
external packages, such as analogy and spatial 
reasoning. 

• It supports a number of advice wrappers to 
declaratively specify different kinds of resource 
limits on queries. 

 The reflexive level has two API calls that define the 
stratified services: ask and query.  Ask is the most 
primitive inference, and in the simplest case just invokes 

the KB to retrieve statements and justifies them in the TMS 
(see below).  It also supports microtheories, outsourced 
predicates, and advice wrappers.  Query on the other hand, 
is the entry point for backchaining.  It interprets rules in the 
form of Horn clauses and searches breadth-first for all 
solutions to the query.  The use of Horn clauses is another 
way the reflexive level trades off flexibility for efficiency, 
since the rules specify the order in which to search 
antecedents.  By default, the depth of the search tree is 
limited to twenty, though this can be adjusted through 
advice wrappers.  Query is built on top of ask and 
supports the same parameters, advice wrappers, and 
context restrictions. 
 The Logic-based Truth Maintenance System (LTMS) 
actually has three main functions: it caches results in RAM 
to reduce KB accesses, it provides an audit trail for 
explanation, and it maintains consistency when 
assumptions change.  Every time a fact is retrieved from 
the knowledge base, the fact is stored in working memory 
along with a justification that indicates that it came from 
the KB.  Facts that are inferred are justified with the kind 
of inference and any antecedents that support them.  When 
belief in an antecedent changes, the change is rapidly 
propagated without re-computing the actual inference.  
This is especially important for higher-level reasoning such 
as planning, where many states are projected and retracted 
as it searches for a solution. 
 The microtheory contexts partition the knowledge base 
into collections of locally consistent and related assertions 
(Lenat, 1998). Every query in FIRE is made with respect to 
a context that limits KB retrievals to only those contexts 
accessible from the query context (via microtheory 
inheritance).  This has the effect of both improving 
efficiency by reducing retrieval results and ensuring 
correctness by avoiding retrievals from unintended 
contexts (such as hypothetical, fictional, or counterfactual 
microtheories).  In earlier versions of FIRE, before 
contexts were strictly enforced, there was always the 
possibility of seeing statements about Frodo Baggins in 
inferences involving military courses of action, for 
example. 
 Outsourced predicates are the mechanism that makes 
FIRE a federated reasoning engine.  Inferences that are 
implemented via external code are reified through 
predicates defined in the knowledge base.   When a query 
is invoked that involves an outsourced predicate, FIRE 
invokes the associated code rather than attempting to 
retrieve an answer from the KB.  Often, outsourced 
predicates serve as an interface to an external package, 
such as a simulation, game, or analogy system that can be 
thought of as an alternative knowledge source.  For 
example, analogical matching is carried out via the 
Structure-Mapping Engine (Falkenhainer et al 1989) via 
outsourced predicates.  Similarly, analogical retrieval and 
generalization are both invoked through predicates that ask 
for reminding and/or add cases to case libraries or 
generalization contexts.  Other times, an outsourced 
predicate may simply be a more efficient way to encode an 



algorithm.  One benefit of invoking code in this way is that 
declarative and procedural knowledge remain distinct and 
rules do not textually embed pieces of code in them. 
 In order to provide declarative control over reflexive 
reasoning, FIRE uses advice wrappers that encapsulate 
queries.  Although the control strategy itself is fixed in 
reflexive reasoning, wrappers can specify bounds on 
resources, contexts, fact sources, and recursive depth of 
inferences.  For example, (wmOnly <query>) limits 
<query> to be solved using only the contents of working 
memory, without accessing the knowledge base at all.  
(withBackchainingDepth <n> <query>) puts a strict 
bound on recursive backchaining.  (localOnly  <query>) 

limits lookups to the current microtheory environment 
without inheritance. All told, there are about 25 such 
wrapper predicates.  Over time, we have come to rely less 
on the strict stratification of ask and query and have 
adopted a more nuanced control over resources via the 
advice wrappers. 

Deliberative Reasoning 

The deliberative reasoning services are designed to support 
simple kinds of reflective control.  Currently, there are two 
services at this level: solve and plan.  
 Solve is, at its core, an And/Or graph search algorithm 
(Forbus & de Kleer, 1993).  By itself, this is not 
deliberative.   The deliberative aspect derives from three 
features: 
1) A suggestions architecture that explicitly represents 

alternative solution strategies for problems in the 
form of and/or graphs,  

2) preferences between suggestions, implemented via 
estimated costs for particular nodes and explicit 
preference rules, and 

3) reification of the graph in a way that permits 
incremental operation,  reasoning about the state of 
the search, halting, or requesting additional answers. 

Unlike the reflexive inferences, solve searches in a best-
first manner, governed by cost estimates calculated by the 
system, and produces single solution by default.  It can 
incrementally produce additional solutions on demand and 
can be interrupted and resumed by external systems.    The 
explicit representation of suggestions and preferences is 
designed to permit reflective control and make it possible 
to learn heuristics for problem solving. 
 Plan is a Hierarchical Task Network (HTN) planner 
modeled after the SHOP algorithm (Nau et al 1999).  It 
reduces high-level, non-operational tasks to linear 
sequences of ground primitive actions that can be 
executed.  As with solve, it is not the planning algorithm 
itself that is deliberative, but the heuristics for preferring 
one task expansion over another and facilities for 
incremental operation. 
 The planner and solver are not built on top of each other, 
but are complementary services.  Solve is a purely 
inferential mechanism that searches for sets of bindings to 
answer queries.  Although planning is also inferential, the 
execution of plans provides a way to take action in the 

world.  An agent can thus execute actions that generate 
new knowledge and write it out to the knowledge base, or 
execute actions in an external system such as a game. 
 Another deliberative aspect of the planner is the ability 
to generate partial plans that include actions to defer 
further planning until execution time. The doPlan operator 
invokes planning as a primitive action. This allows the 
plan/execution system to take actions that generate 
information and then resume planning given that new 
information.  The doSolve operator can likewise invoke 
the solver as a primitive action.  The execution system that 
makes this incremental behavior possible is not part of 
FIRE itself, but is implemented as part of the Companions 
architecture that builds upon it.  We describe Companions 
next. 

Example FIRE application: Companions 

The Companions cognitive architecture is exploring the 
idea that analogical processing is a central operation in 
human intelligence.  Because we believe that common 
sense relies on experience, and to date the more social 
creatures are, the smarter they tend to be (Tomasello, 
1999), Companions are being built with the goal of being 
social organisms, capable of interacting with people and 
thereby learning from them, in an apprenticeship fashion 
(Vygotsky, 1962).   For engineering reasons, Companions 
are implemented via a distributed agent architecture.  This 
enables us to escape the limitations of a single desktop 
machine by distributing agents over a cluster nodes.  
However, multiple agents can also be run on a single 
machine, for portability and ease of experimentation.   
Depending on configuration, agents either share a KB 
running on a separate KB server, or have their own local 
copy of the KB, for efficiency.  A journaling mechanism is 
used to synchronize KB contents across agents. 
 The agents that make up a Companion communicate via 
KQML (Labrou & Finin, 1997).  With the exception of a 
Facilitator that sets up communication links between other 
agents, and a Session Manager that provides a GUI for 
starting, stopping, and debugging, agents are basically a 
lightweight layer of communication services around FIRE.  
Most of the operations of an agent are specified either via 
HTN plans or solve suggestions, with simple “heartbeat” 
computations invoking planning or solving as necessary.  
 Companions have been used in a variety of experiments. 
In modeling everyday physical reasoning (Klenk et al 
2005) and transfer learning in AP Physics (Klenk & 
Forbus, 2009), solve was used with cases retrieved via 
analogy to learn by accumulating examples.  Transfer 
learning in general game playing (Hinrichs & Forbus 2009) 
used plan to conduct experiments to learn winning 
strategies for games, and SME for analogical mapping to 
transfer learned strategies to new games.  SAGE has been 
used to model learning of naïve conceptions of motion 
from sketched comic strips (Friedman & Forbus, 2009) and 
sketched concepts using near-misses as well as 



generalization (McClure et al 2010).  These experiments 
would not have been possible without FIRE. 

Related Work 

Many of our design choices are inspired by Cycorp’s Cyc 
family of reasoning engines.  This includes the use of 
specialized storage for common kinds of facts, hidden 
behind a standard pattern-directed retrieval interface for 
uniform access, the use of microtheories to provide a 
logical environment for reasoning, and the use of a variety 
of procedural attachments for efficient inference.  We 
diverge from them in making analogical reasoning primary 
in the reasoning system – analogical matching and 
retrieval, for example, are more primitive than 
backchaining, since they occur using ask. 

Discussion 

We believe that the key to common sense reasoning is 
analogical reasoning and learning over vast amounts of 
experience.  We have described FIRE, the KB and 
reasoning infrastructure we have built to experiment with 
experience-based systems.  Rapid retrieval from the KB 
while respecting logical environment constraints is 
supported by mention integers and a persistent TMS.  
Specialized support for case libraries and generalization 
contexts support analogical reasoning and learning.  
Stratified reasoning services provide a combination of 
reflexive and deliberative inference, supporting constrained 
logical inference, traditional problem solving, and 
planning.  These techniques are used in the Companions 
cognitive architecture, and are key to its performance in a 
variety of successful experiments. 
 There are several avenues for future work.  First, we are 
planning larger-scale experiments with Companions, with 
the goal of improving the architecture and our NLU and 
sketch understanding capabilities to the point where they 
are able to learn as apprentices and learn by reading.  
Second, a problem with the current strategies in the 
reflexive layer is that they return all solutions by default.  
This does not scale well, and we plan to explore techniques 
like lazy retrieval or spreading-activation memories (cf. 
Anderson 2007) to find better solutions. 
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